

Risk Assessment and Behavioral Health Statistics: Modeling Lifestyle Factors and Exposure Impacts on Public Health Outcomes

**Sylvester Chibueze Izah^{1,2*}; Andrew Sampson Udoфia³;
Idara Uyoata Johnson⁴; Nsikak Godwin Etim⁵**

¹ Department of Community Medicine, Faculty of Clinical Sciences, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria.

² Department of Microbiology, Faculty of Science, Bayelsa Medical University, Yenagoa, Bayelsa State, Nigeria;

³ Department of Public Health, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.

⁴ Department of Medical Laboratory Science, Igbinedion University, Okada, Edo State, Nigeria.

⁵ Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.

ARTICLE INFO

ABSTRACT

Article No.: 120424188

Type: Research

Full Text: [PDF](#), [PHP](#), [HTML](#), [EPUB](#), [MP3](#)

DOI: [10.15580/gjeph.2024.1.120424188](https://doi.org/10.15580/gjeph.2024.1.120424188)

Accepted: 10/12/2024

Published: 19/12/2024

***Corresponding Author**

Sylvester Chibueze Izah

E-mail: chivestizah@gmail.com

Keywords: Risk assessment, Behavioral Health, Statistical modeling, Lifestyle factors, Public health outcomes, Exposure assessment, Health disparities, AI and machine learning

Risk assessment in public health is a vital and evolving process that seeks to understand the various factors influencing health outcomes, particularly those related to lifestyle and environmental exposures. This paper focuses on the role of statistical modeling in evaluating and predicting the risks associated with lifestyle behaviors, environmental exposures, and their cumulative impacts on health outcomes. The paper found that statistical modeling is essential for predicting and understanding the complex relationships between lifestyle factors, environmental exposures, and public health outcomes. Advances in artificial intelligence (AI) and machine learning have significantly improved the accuracy of risk predictions, allowing for more personalized and effective interventions. The modeling of lifestyle factors such as diet, physical activity, and smoking was shown to have a significant impact on chronic disease prevention and management. Environmental and occupational exposure assessments are critical in identifying risks disproportionately affecting vulnerable populations. The cumulative effect of multiple risk factors, including social determinants of health, was highlighted as a significant driver of health disparities. Finally, integrating these modeling techniques into public health practice can improve the overall effectiveness of health interventions. The paper recommends enhancing advanced statistical methods and AI in risk prediction models to identify at-risk populations and target interventions better. It also advocates for incorporating social determinants of health into risk assessments to promote health equity and reduce disparities across communities.

1. INTRODUCTION

Risk assessment in public health is a critical process that involves identifying, evaluating, and prioritizing risks to health, with the ultimate goal of mitigating those risks to improve population health outcomes. Risk assessment definitions can vary but generally encompass the systematic evaluation of potential adverse health effects from exposure to various environmental, biological, or lifestyle-related hazards. The types of risk assessment can be categorized into qualitative and quantitative assessments, with qualitative assessments focusing on descriptive evaluations of risks and quantitative assessments employing statistical methods to estimate the likelihood and impact of adverse health outcomes (Linkov et al., 2018; Kennedy et al., 2019). Furthermore, risk assessments can be specific to certain populations or conditions, such as assessing risks associated with chronic diseases, infectious diseases, or environmental exposures, thereby allowing for targeted interventions and resource allocation (Kansagara et al., 2011; Shin et al., 2013).

Statistical modeling is essential in risk evaluation, providing the framework for understanding complex relationships between risk factors and health outcomes. Models such as the Framingham Risk Score have been widely used to predict the likelihood of cardiovascular events based on various risk factors, including age, cholesterol levels, and blood pressure (Zhou et al., 2017; Hu et al., 2014). The C-statistic, a measure of model performance, is frequently employed to assess the accuracy of these predictive models. For instance, studies have shown that incorporating additional risk factors into existing models can significantly enhance their predictive capabilities, as evidenced by improved C-statistics when social determinants of health are included in heart failure readmission models (Wray et al., 2021; De Vito et al., 2015). Moreover, using advanced statistical techniques, such as generalized additive models and restricted cubic splines, allows for exploring nonlinear relationships between covariates and outcomes, further refining risk predictions (Austin & Reeves, 2013; Uno et al., 2011).

Lifestyle and environmental risks are significant contributors to public health challenges, with various studies highlighting the impact of these factors on health outcomes. For example, metabolic syndrome strongly predicts type 2 diabetes and cardiovascular diseases, underscoring the importance of lifestyle factors such as diet, physical activity, and obesity in risk assessment (Shin et al., 2013; Hinnouho et al., 2014). Additionally, environmental exposures, such as air pollution and chemical contaminants, have been linked to a range of health issues, including respiratory diseases and cancer, necessitating comprehensive risk assessments that consider both individual and environmental factors (Kennedy et al., 2019). The interplay between lifestyle choices and environmental conditions illustrates the complexity of risk assessment in public health, as

interventions must address multiple determinants of health to be effective. Integrating statistical modeling into risk assessment allows a more nuanced understanding of how various factors contribute to health risks. For instance, incorporating biomarkers and genetic predispositions into risk models can enhance the precision of risk predictions for conditions such as coronary heart disease (Rodondi et al., 2012; Stern, 2022). Furthermore, developing risk prediction tools that account for demographic and socioeconomic variables can help identify at-risk populations and inform targeted public health interventions (Kansagara et al., 2011; Lotta et al., 2015). Using meta-analyses to synthesize findings across studies also contributes to the robustness of risk assessments, as it provides a broader perspective on the relationships between risk factors and health outcomes (Bell et al., 2014).

In the context of public health, the implications of risk assessment extend beyond individual health (Izah et al., 2024a,b,c,d,e) outcomes to involve broader societal impacts. For example, understanding the risks associated with lifestyle factors can inform public health campaigns aimed at reducing obesity and promoting physical activity (Rhee et al., 2014; Shin et al., 2013). Risk assessments considering environmental factors can also guide policy decisions related to pollution control and community planning, ultimately leading to healthier environments (Linkov et al., 2018; Kennedy et al., 2019). The collaborative nature of risk assessment, which often involves stakeholders from various sectors, underscores the importance of a multidisciplinary approach to addressing public health challenges (Linkov et al., 2018; Uno et al., 2011).

Moreover, the ethical considerations surrounding risk assessment must be considered. The potential for disparities in health outcomes based on socioeconomic status or access to healthcare raises essential questions about equity in risk assessment and intervention strategies (Kansagara et al., 2011; Shin et al., 2013). Ensuring that risk assessments are inclusive and consider the needs of marginalized populations is essential for promoting health equity and improving overall public health outcomes. This necessitates ongoing dialogue and collaboration among public health professionals, policymakers, and community stakeholders to ensure that risk assessment processes are transparent, equitable, and effective (Linkov et al., 2018; Kennedy et al., 2019).

The paper explores the intersection of risk assessment and behavioral health statistics, emphasizing how lifestyle factors and exposure impacts influence public health outcomes. It examines advanced statistical modeling techniques to quantify risks, evaluate cumulative exposures, and assess the effectiveness of behavioral interventions. By integrating social determinants of health and leveraging emerging technologies, the paper highlights strategies to improve risk prediction, reduce health disparities, and inform targeted public health interventions.

2: STATISTICAL METHODS IN EXPOSURE ASSESSMENT

Statistical methods in exposure assessment are critical for understanding the relationship between environmental and occupational exposures and health outcomes (Table 1). These methods can be broadly categorized into direct measurement techniques, indirect methods, and modeling techniques. Direct measurement techniques include using biomarkers and environmental

sampling, which provide concrete data on exposure levels. For instance, biomarkers can indicate the presence of specific chemicals or their metabolites in biological samples, thereby offering a reliable estimate of exposure to harmful substances (Rudel et al., 2014; Kim et al., 2021; Brucker et al., 2020). Environmental sampling, such as air quality monitoring, allows researchers to quantify pollutant levels in specific locations, which can be correlated with health outcomes in nearby populations (Brucker et al., 2020; Izah et al., 2021a).

Table 1: Statistical Methods in Exposure Assessment Techniques Applications and Public Health Outcomes

Method/Approach	Examples/Applications	Techniques	Public health outcomes
Estimating exposure levels	GIS-based air pollution analysis; biomarker studies	Direct (e.g., biomarkers); Indirect (e.g., surveys, GIS)	Enhanced risk mapping and exposure mitigation strategies.
Quantifying Risk: Odds Ratios (OR)	Smoking and lung cancer in case-control studies	Statistical analysis in case-control studies	Identification of key risk factors; personalized health interventions.
Quantifying Risk: Hazard Ratios (HR)	Long-term exposure to occupational hazards and chronic illnesses	Time-to-event analysis in cohort studies	Early detection and prevention of long-term occupational diseases.
Quantifying Risk: Relative Risk (RR)	Comparing disease outcomes between pesticide-exposed and non-exposed groups	Relative probability comparison in group studies	Evidence-based policy for agricultural and industrial safety.
Studies in Environmental Health	Impact of air pollution on respiratory health in urban populations	Exposure modeling, epidemiological studies	Improved urban planning and air quality regulations.
Studies in Occupational Health	Health impacts of chemical exposure in industrial environments	Longitudinal workplace exposure studies	Implementation of stricter workplace safety standards.

Indirect methods, such as self-reported surveys and geographic information systems (GIS), serve as alternatives when direct measurements are impractical or impossible. Self-reported surveys can capture individuals' perceptions of their exposure and behaviors, although they may be biased and inaccurate (Brucker et al., 2020). GIS technology enables researchers to analyze spatial data and assess exposure levels based on geographic factors, such as proximity to pollution sources or urban development (Brucker et al., 2020). This method has been beneficial in studies examining the impact of air pollution on respiratory diseases, where spatial analysis can reveal exposure patterns and health outcomes across different populations (Brucker et al., 2020).

Modeling techniques are employed to estimate exposure levels for populations lacking direct data. These models can incorporate various factors, including demographic information, environmental data, and historical exposure levels, to predict exposure risks (Brucker et al., 2020). For example, statistical models can estimate the likelihood of exposure to hazardous substances based on known risk factors and historical data, providing valuable insights for public health interventions (Brucker et al., 2020). Such modeling approaches are essential for understanding the broader

implications of exposure on population health, especially in cases where direct measurement is not feasible.

Quantifying the risk associated with exposure is another critical aspect of exposure assessment. Odds ratios (OR) are commonly used in case-control studies to measure the likelihood of exposure-associated outcomes. The OR compares the odds of exposure among cases (individuals with the outcome) to the odds of exposure among controls (individuals without the outcome) (Kerr et al., 2023; Langholz, 2010). This measure is handy in epidemiological studies where the outcome is rare, as it clearly indicates the strength of the association between exposure and disease (Kerr et al., 2023; Langholz, 2010). However, it is essential to interpret ORs carefully, as they can overestimate risk ratios (RR) in specific contexts, mainly when the outcome is not rare (Knol et al., 2011).

Hazard ratios (HR) are utilized in time-to-event analyses, particularly in cohort studies, to evaluate the effects of long-term exposure on health outcomes. The HR compares an event's occurrence rate (e.g., disease onset) between exposed and non-exposed groups over time (de Gage et al., 2012). This measure is precious in longitudinal studies where the timing of exposure and the occurrence of outcomes are critical for understanding causal relationships (de Gage et al., 2012). For instance,

studies examining the long-term effects of benzodiazepine use on dementia risk have employed HRs to assess the relationship between medication exposure and disease onset over time (de Gage et al., 2012).

Relative risk (RR) is another important measure used to compare the probability of outcomes between exposed and non-exposed groups. RR is calculated by dividing the incidence rate of the outcome in the exposed group by the incidence rate in the non-exposed group (Knol et al., 2011). This measure provides a straightforward interpretation of risk and is particularly useful in cohort studies where disease incidence can be directly observed (Knol et al., 2011). However, like ORs, the underlying prevalence of the outcome can also influence RRs, necessitating careful consideration of their interpretation (Knol et al., 2011).

Environmental and occupational health case studies provide valuable insights into applying these statistical methods in real-world contexts. For example, research on air pollution exposure has demonstrated a significant association with respiratory diseases, utilizing GIS and air quality indices to assess exposure levels (Brucker et al., 2020). These studies highlight the importance of integrating direct measurement techniques with advanced statistical analyses to elucidate the health impacts of environmental exposures (Brucker et al., 2020). Furthermore, the assessment of pesticide exposure in agricultural workers has revealed increased cancer risks, underscoring the need for robust exposure assessment methodologies in occupational health research (Brucker et al., 2020).

In addition to air pollution and pesticide exposure, studies on workplace chemical exposure have identified correlations with chronic conditions such as cardiovascular diseases. These investigations often employ direct measurement techniques, such as biomonitoring and statistical modeling, to assess the health impacts of long-term exposure to hazardous substances (Ghafari et al., 2020; Brucker et al., 2020). For instance, biological monitoring of oxidative stress biomarkers has been utilized to evaluate the effects of

nanomaterial exposure in occupational settings, highlighting the importance of integrating biological and environmental data in exposure assessments (Ghafari et al., 2020; Brucker et al., 2020).

Integrating statistical methods in exposure assessment is essential for informing public health policies and interventions. By accurately estimating exposure levels and quantifying associated risks, researchers can provide evidence-based recommendations for reducing exposure and mitigating health risks in vulnerable populations (Brucker et al., 2020). Moreover, applying advanced statistical techniques, such as causal inference methods and machine learning algorithms, holds promise for enhancing the precision and accuracy of exposure assessments in future research (Brucker et al., 2020).

3: MODELING LIFESTYLE FACTORS AND HEALTH OUTCOMES

Modeling lifestyle factors and health outcomes is a critical area of research that seeks to understand how various lifestyle choices impact health and longevity (Table 2). Statistical models, particularly regression models, are frequently employed to analyze the influence of diet, exercise, and smoking on health outcomes. These models allow researchers to quantify the relationships between lifestyle factors and health, providing a robust framework for understanding how these variables interact. For instance, studies have demonstrated that adherence to healthy lifestyle behaviors significantly correlates with improved health outcomes, including reduced risks of chronic diseases such as diabetes and cardiovascular conditions (Li et al., 2020; Chen et al., 2021). Furthermore, predictive models have been developed to estimate the long-term effects of lifestyle behaviors on disease progression, highlighting the importance of early interventions and lifestyle modifications in preventing chronic diseases (Viallon et al., 2023).

Table 2: Statistical Modeling of Lifestyle Factors and Their Impact on Public Health Outcomes

Aspect	Examples	Applications	Public health outcomes
Statistical Models for Assessing Lifestyle Factors	Regression models for diet, exercise, and smoking	Predictive modeling for long-term health impacts of lifestyle behaviors	Improved ability to forecast and mitigate health risks
Impact of Behavioral Choices on Disease Risk	Sedentary lifestyle linked to diabetes and heart disease	Quantification of risk for conditions like obesity and hypertension	Increased awareness of behavioral contributions to disease prevention
Applications in Chronic Disease Prevention	Targeted interventions for exercise and diet changes	Development of public health campaigns and policy initiatives	Reduced prevalence of chronic diseases through prevention programs

The impact of behavioral choices on disease risk is profound and multifaceted. Quantifying the relationship between sedentary lifestyles and the risk of chronic conditions is essential for public health initiatives. Research indicates that sedentary behavior is strongly associated with an increased risk of developing chronic diseases, including diabetes and cardiovascular disease (Foster et al., 2018). Additionally, dietary patterns play a crucial role in influencing obesity, hypertension, and cancer risks. For example, studies have shown that individuals who maintain a healthy diet are less likely to develop obesity-related conditions and cancers than those with poor dietary habits (Chen et al., 2021; Lyu et al., 2015). This underscores the necessity of promoting healthy eating and physical activity as fundamental strategies for disease prevention.

Data-driven insights into modifiable lifestyle risks increasingly inform applications in chronic disease prevention. Public health campaigns can be designed to target specific lifestyle factors that contribute to chronic disease incidence. For instance, campaigns aimed at reducing smoking rates and promoting physical activity have shown effectiveness in lowering the prevalence of smoking-related diseases and improving overall health outcomes (Foster et al., 2018). Evaluating the potential of lifestyle interventions, such as exercise programs and dietary changes, is vital for understanding their impact on chronic disease incidence. Evidence suggests that structured lifestyle interventions can significantly improve health metrics, thereby reducing the burden of chronic diseases on healthcare systems (Zhang et al., 2021).

Integrating socioeconomic status (SES) into analyzing lifestyle factors and health outcomes is crucial for understanding health disparities. Research has shown that SES significantly influences health outcomes, often mediating the effects of lifestyle factors on health (Wang & Geng, 2019). For instance, individuals with higher education levels tend to report better health outcomes, even when controlling for lifestyle factors, indicating that education may foster healthier lifestyle choices (Uhernik et al., 2019). This relationship highlights the importance of addressing SES in public health strategies to improve health outcomes across diverse populations. Moreover, the role of lifestyle monitoring systems in managing health outcomes cannot be overstated. The Care-On trial, for example, investigates the long-term adherence to lifestyle monitoring among patients with heart disease, positing that such systems can enhance self-management and motivate healthier behaviors (Goevaerts et al., 2023). The findings from this trial inform future interventions aimed at improving lifestyle adherence, ultimately leading to better health outcomes for individuals with chronic conditions.

The significance of quality of life (QOL) in chronic disease management is increasingly recognized. Studies have demonstrated that continued engagement with healthy lifestyle practices correlates with improved QOL and survival rates among individuals with chronic

diseases, such as multiple sclerosis (Marck et al., 2018). This emphasizes the need for healthcare providers to consider QOL as a critical outcome when designing interventions and treatment plans for chronic disease patients. Furthermore, the relationship between lifestyle factors and mental health outcomes is an area of growing interest. Research indicates that lifestyle interventions can improve mental health and well-being, suggesting a bidirectional relationship between physical and mental health (Dale et al., 2014; Taylor et al., 2014). For instance, individuals who engage in regular physical activity and maintain a healthy diet are less likely to experience depression and anxiety, highlighting the importance of lifestyle choices in mental health management (Hutchinson et al., 2021).

Understanding the combined effects of multiple lifestyle factors is essential in chronic disease prevention. Studies have shown that individuals who adopt a combination of healthy behaviors such as not smoking, maintaining a healthy weight, and engaging in regular physical activity experience significantly lower risks of chronic diseases (Li et al., 2020; Chen et al., 2021). This underscores the importance of promoting comprehensive lifestyle changes rather than focusing on single behaviors in public health initiatives.

Developing indices that quantify healthy lifestyle behaviors can facilitate research and public health messaging. The Healthy Lifestyle Index (HLI), for example, has been utilized to assess the impact of lifestyle factors on health outcomes across various populations (Viallon et al., 2023; Chen et al., 2021). Such indices can provide valuable insights into the cumulative effects of lifestyle behaviors, aiding in identifying at-risk populations and designing targeted interventions. Additionally, the role of geographic and environmental factors in influencing lifestyle choices and health outcomes is an important consideration. Research has shown that neighborhood characteristics, such as access to recreational facilities and social support, can significantly impact lifestyle behaviors and health outcomes (Woo et al., 2010). This highlights the need for policies that address environmental determinants of health, promoting equitable access to resources that support healthy lifestyles.

4: BEHAVIORAL HEALTH STATISTICS AND INTERVENTION ASSESSMENT

Behavioral health interventions have gained significant attention in recent years, particularly in the context of promoting healthier lifestyles. The effectiveness of behavior change interventions is often quantitatively evaluated through various metrics (Table 3), including reduced disease incidence, improved biomarkers, and sustained behavioral adherence. For instance, systematic reviews and meta-analyses have demonstrated that interventions targeting multiple health behaviors can significantly improve health outcomes, particularly in chronic disease prevention (Alageel et al.,

2017; Braver et al., 2017). These interventions often employ various behavior change techniques, which have been shown to enhance efficacy when more techniques

are utilized, as they can address different facets of the behavior change process (Webb et al., 2010; Hagger et al., 2020).

Table 3: Evaluating Behavioral Interventions for Public Health Impact

Aspect	Key focus	Example interventions	Public health outcomes
Effectiveness of behavior change interventions	Assessing the success of lifestyle modifications in improving health behaviors	Smoking cessation campaigns; physical activity programs	Reduced smoking prevalence; improved cardiovascular health; lower obesity rates.
Statistical tests for pre- and post-intervention impact	Utilizing statistical methods to evaluate intervention outcomes	Paired t-tests, analysis of variance for pre- and post-dietary interventions	Demonstrated improvement in biomarkers (e.g., cholesterol, glucose levels).
Studies on Lifestyle Interventions	Exploring real-world applications of interventions and their challenges	Workplace wellness programs; community-based weight management initiatives	Enhanced employee productivity; decreased community obesity prevalence.
Barriers and strategies for success	Identifying and addressing factors affecting intervention uptake and effectiveness	Addressing stigma in mental health programs; increasing accessibility	Improved intervention participation rates; sustained long-term health benefits.

In assessing the effectiveness of these interventions, researchers frequently utilize outcome metrics that reflect changes in health status. For example, studies have reported significant reductions in obesity rates and improvements in cardiovascular health due to comprehensive lifestyle interventions (Braver et al., 2017). Furthermore, biomarkers such as blood pressure and cholesterol levels serve as critical indicators of health improvement, providing tangible evidence of the success of these interventions (Duan et al., 2021; Silva et al., 2024a,b). The sustainability of these behavioral changes is also crucial, as long-term adherence to healthier lifestyles is often linked to ongoing support and engagement strategies (Duncan et al., 2014; Donkin et al., 2011).

Statistical tests are vital in evaluating the impact of behavior change interventions. Paired t-tests, ANOVA, and regression analyses are commonly employed to measure pre- and post-intervention changes in key health indicators (Wilson et al., 2015; Lippke et al., 2016). For instance, longitudinal studies have shown that the durability of behavioral changes can be effectively assessed using these statistical methods, allowing researchers to track the long-term effects of interventions on health outcomes (Hunter et al., 2015). Applying these statistical techniques provides insights into the immediate effects of interventions and helps in understanding the factors that contribute to sustained behavior change over time (Silva et al., 2024a,b).

Studies of successful lifestyle interventions provide valuable insights into the practical application of behavior change strategies. For example, weight management programs have significantly reduced obesity rates among participants, highlighting the effectiveness of structured interventions in promoting healthier eating and physical activity (Braver et al., 2017;

Krukowski et al., 2011). Additionally, workplace wellness initiatives have demonstrated improvements in employee health outcomes, showcasing the potential of organizational support in facilitating behavior change (Hartman & Rosen, 2017). However, barriers to intervention success, such as lack of participant engagement and insufficient resources, must be addressed to enhance the effectiveness of these programs (Moreno et al., 2019).

Analyzing barriers to intervention success is essential for refining strategies to improve participation and effectiveness. Research indicates that personalized interventions, which cater to individual preferences and needs, yield better outcomes than standardized approaches (Hartman & Rosen, 2017). Moreover, understanding the social dynamics within intervention settings can help identify hidden social networks that may influence behavior change (Hunter et al., 2015; Gesell et al., 2013). By leveraging these networks, interventions can foster a supportive environment encouraging adherence to healthier behaviors. Furthermore, the role of technology in behavior change interventions must be considered. Digital platforms have emerged as practical tools for promoting health behavior change, with studies indicating that web- and mobile-based interventions can significantly improve physical activity and dietary habits (Duncan et al., 2014; Duan et al., 2021). Integrating technology allows for greater accessibility and flexibility in intervention delivery, enhancing participant engagement and adherence (Yardley et al., 2011; Donkin et al., 2011). However, it is crucial to evaluate the effectiveness of these digital interventions through rigorous research methodologies to ensure their efficacy in promoting long-term behavior change (Duan et al., 2021; Silva et al., 2024a,b).

5: CUMULATIVE RISK AND SOCIAL DETERMINANTS OF HEALTH

Cumulative risk and social determinants of health (SDOH) are critical concepts in understanding health disparities and population outcomes. Cumulative risk refers to the aggregate impact of multiple risk factors, including behavioral, environmental, and genetic influences, on health outcomes. This multifactorial

approach is essential for accurately modeling the complex interactions contributing to health disparities. For instance, Wang et al. (2023) highlighted how various risk factors, including age, environmental conditions, and social determinants, influence health outcomes, particularly in the context of COVID-19. This underscores the necessity of developing statistical models to effectively evaluate the combined effects of these diverse risk factors to identify high-risk populations.

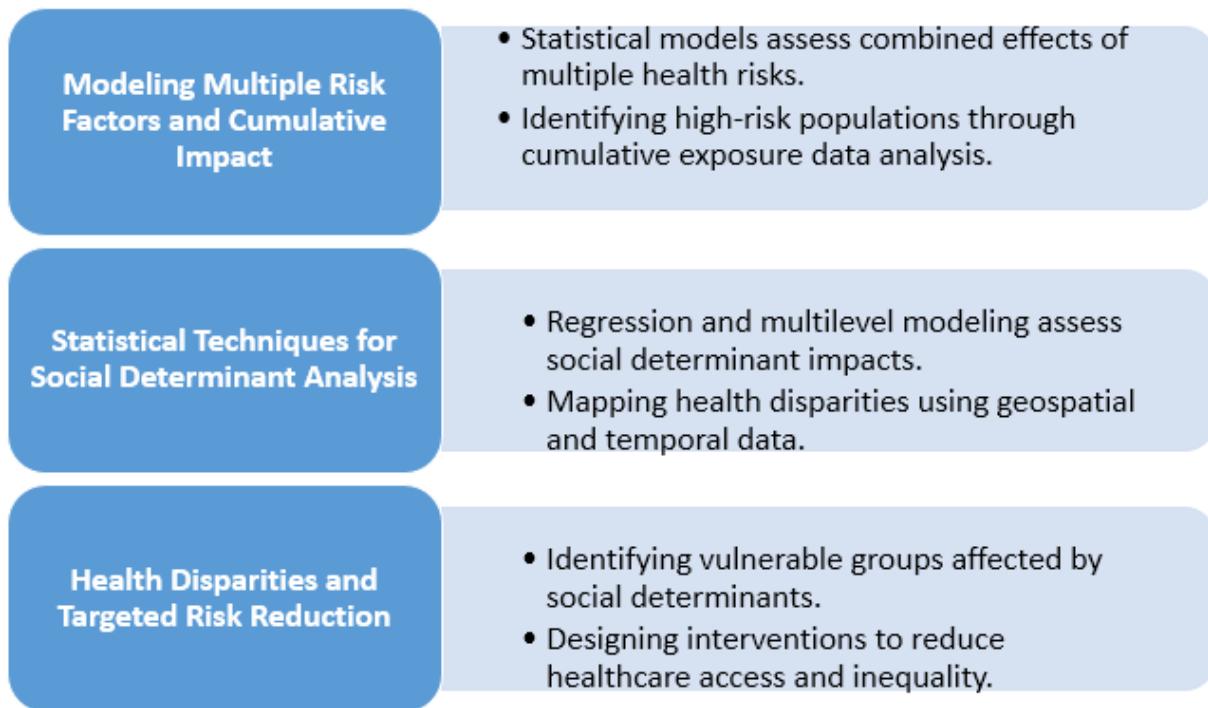


Figure 1: Cumulative Risk and Social Determinants of Health Statistical Approaches to Understanding Disparities and Targeted Interventions

Statistical modeling techniques play a vital role in analyzing the cumulative impact of social determinants on health. Regression models, path analysis, and multilevel modeling are frequently employed to assess how social determinants influence health outcomes. For example, Caleyachetty et al. (2015) demonstrated the association between cumulative social risk and cardiovascular health, emphasizing the importance of understanding these relationships in the context of public health. Moreover, integrating geospatial and temporal data allows researchers to map health disparities and their correlation with access to healthcare, education, and income levels, providing a more nuanced understanding of how social determinants shape health outcomes.

Identifying vulnerable populations disproportionately affected by social determinants is crucial for targeted risk reduction strategies. Low-income communities and marginalized populations often experience compounded disadvantages that exacerbate

health disparities. Ozieh et al. (2021) illustrated how cumulative social determinants significantly impact mortality rates among individuals with chronic conditions like diabetes and kidney disease, highlighting the urgent need for targeted interventions. Public health initiatives can effectively reduce disparities and improve health outcomes in these vulnerable groups by designing policies that address specific social determinants such as housing instability and food insecurity. In addition to identifying high-risk populations, it is essential to develop statistical techniques that can accurately assess the influence of social determinants on health. For instance, Linder and Sexton (2011) emphasized the importance of theoretical frameworks in cumulative risk assessment, advocating for models incorporating chemical and non-chemical stressors, including social determinants. This comprehensive approach allows a better understanding of how various stressors interact and contribute to health disparities. Furthermore, path analysis and multilevel modeling can elucidate the complex relationships

between social determinants and health outcomes, providing valuable insights for policymakers and health practitioners.

The interplay between genetic predisposition and environmental factors further complicates cumulative risk assessment. Research by Daack-Hirsch et al. (2017) indicated that genetic factors interact dynamically with lifestyle and environmental influences, suggesting that health outcomes result from a complex interplay between genes and social determinants. This understanding is crucial for developing effective interventions considering genetic and environmental risk factors. Additionally, studies like those conducted by Althoff et al. (2011) emphasized the need to explore gene-environment interactions, particularly in the context of mental health outcomes, better to understand the cumulative impact of these factors on health.

Health disparities are often exacerbated by structural inequalities that manifest through social determinants. Prochaska et al. (2014) discussed how environmental exposures and social determinants collectively contribute to cumulative risk in environmental justice communities, highlighting the need for a holistic approach to health equity. By examining the cumulative impacts of various risk factors, researchers can better understand the mechanisms underlying health disparities and develop targeted interventions that address these root causes. This approach is particularly relevant in chronic diseases, where social determinants significantly shape health outcomes. The role of socioeconomic status (SES) in health disparities cannot be overstated. Shea et al. (2016) demonstrated that low SES is associated with poorer health outcomes over time, emphasizing the need for interventions that address the underlying social determinants of health. Public health initiatives can help mitigate the adverse effects of low SES on health by focusing on improving access to education, healthcare, and economic opportunities. Furthermore, integrating social determinants into health assessments can provide a more comprehensive understanding of health disparities and inform targeted interventions.

The cumulative impact of social determinants on health is particularly evident in chronic diseases such as cardiovascular disease (CVD). Zhang et al. (2020)

highlighted how traditional risk factors, when examined alongside social determinants, can provide insights into CVD incidence and mortality disparities. This underscores the importance of adopting a multifactorial approach to health assessments considering biological and social determinants. By doing so, public health initiatives can develop more effective strategies to reduce the burden of chronic diseases in vulnerable populations. Addressing social determinants of health requires a concerted effort from multiple sectors, including healthcare, education, and social services. Figueroa et al. (2020) emphasized the importance of a collaborative approach to addressing social determinants, advocating for policies that promote health equity and improve access to essential services. This holistic perspective is essential for developing effective interventions to reduce health disparities and improve overall population health. By recognizing the interconnectedness of social determinants and health outcomes, stakeholders can work together to create environments that support health and well-being for all individuals.

6: Advancements in Risk Assessment Methodology

Advancements in risk assessment methodology have become increasingly crucial in various fields, particularly in public health, environmental safety (Izah et al., 2021b), and clinical medicine. The evolution of these methodologies has been driven by the need for more accurate predictions of health risks, which can significantly impact policy-making, resource allocation, and individual health outcomes. One of the most notable advancements is the development of robust statistical models that integrate multifactorial approaches. These models combine lifestyle, environmental, and genetic data to evaluate health risks comprehensively. For instance, cumulative risk assessment (CRA) methodologies have been established to evaluate the combined effects of multiple stressors. This allows for a more nuanced understanding of health risks associated with environmental exposures (Williams et al., 2012; Lentz et al., 2015). Integrating diverse data sources enhances the predictive power of risk models, making them more applicable to real-world scenarios (Figure 2).

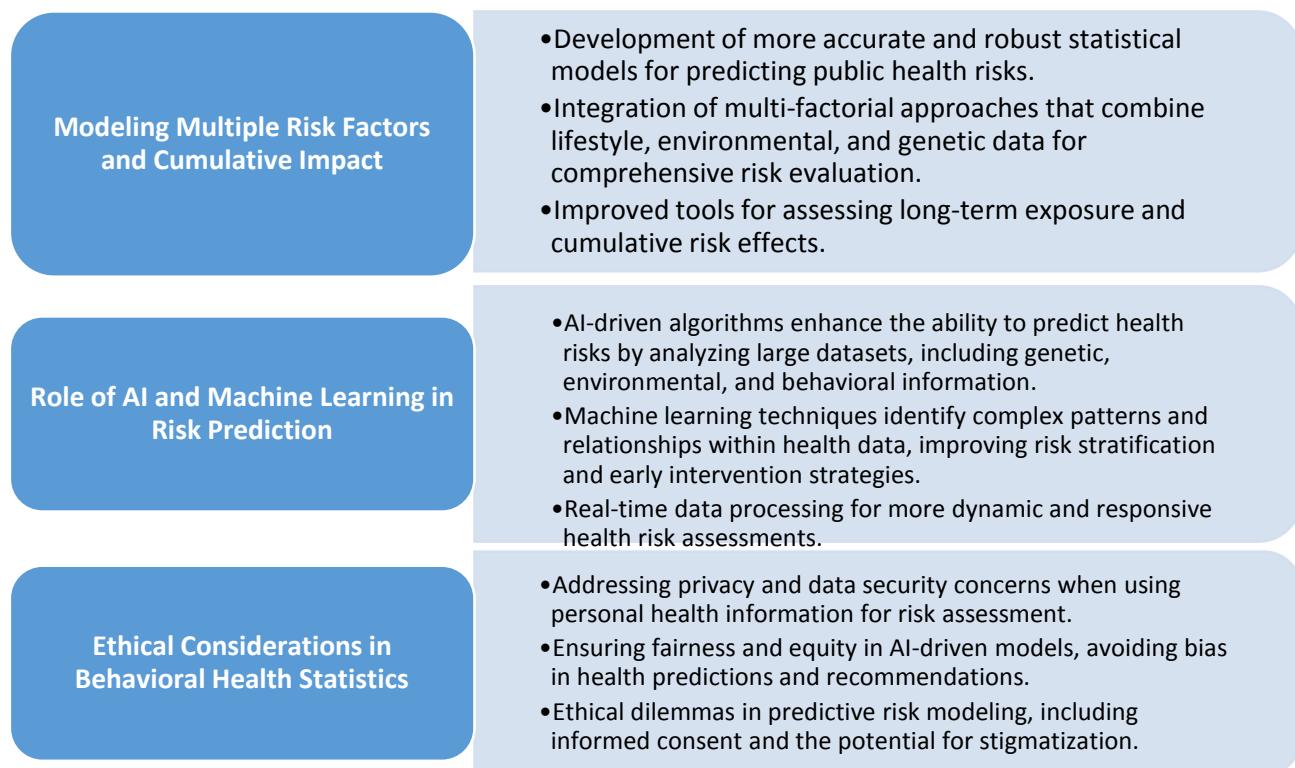


Figure 2: Advancements in Risk Assessment Methodology and Predictive Analytics in Public Health

Moreover, the tools for assessing long-term exposure and cumulative risk effects have significantly improved. Traditional risk assessment methods often focus on single exposures, neglecting the cumulative impact of multiple factors over time. Recent studies have emphasized the importance of considering long-term exposure to various chemicals and environmental hazards, which can lead to chronic health issues (EFSA et al., 2020). For example, the European Food Safety Authority (EFSA) has developed methodologies for cumulative risk assessment of pesticide residues, which include probabilistic modeling to estimate better dietary exposure (EFSA et al., 2020). Such advancements enable researchers and policymakers to make informed decisions regarding public health interventions and regulatory measures. The role of artificial intelligence (AI) and machine learning in risk prediction has emerged as a transformative force in health risk assessment. AI-driven algorithms can analyze vast datasets encompassing genetic, environmental, and behavioral information, enhancing the ability to predict health risks. For instance, machine learning techniques can identify complex patterns and relationships within health data that traditional statistical methods may overlook (Fatima et al., 2023; Hassan et al., 2023a). This capability is particularly beneficial in stratifying risk and implementing early intervention strategies, which can lead to improved health outcomes. The integration of AI in predictive modeling streamlines the analysis process and provides real-time data processing, allowing for more dynamic and responsive health risk assessments (Schwalbe & Wahl, 2020).

Furthermore, the application of AI in surgical settings has demonstrated significant potential in improving patient outcomes. AI-driven predictive models assist surgeons in making critical decisions regarding preoperative planning and risk assessment, ultimately leading to better surgical outcomes (Hassan et al., 2023b). These models can analyze patient data to identify those at high risk for complications, thus enabling targeted interventions that can mitigate risks. The ability of AI to process and analyze complex datasets in real time enhances the overall efficiency of healthcare delivery, making it a valuable tool in modern medicine. However, integrating AI and machine learning in risk assessment raises critical ethical considerations concerning privacy and data security. Using personal health information for risk assessment necessitates stringent measures to protect patient confidentiality and ensure data integrity (Abd-Alrazaq et al., 2022).

Additionally, there is a pressing need to address fairness and equity in AI-driven models to avoid bias in health predictions and recommendations. The potential for algorithmic bias can lead to disparities in healthcare access and outcomes, particularly among marginalized populations (Adefemi et al., 2023). Ensuring that AI systems are developed and implemented emphasizing equity is essential for fostering trust and acceptance among patients and healthcare providers.

In addition to privacy concerns, ethical dilemmas in predictive risk modeling must be carefully navigated. Issues surrounding informed consent and the potential for stigmatization based on risk predictions are critical considerations that must be addressed (Abd-Alrazaq et al., 2022). For instance, individuals identified as high-risk

for specific health conditions may face discrimination or stigmatization, which can deter them from seeking necessary medical care. Ethical frameworks must be established to guide the development and application of AI in health risk assessment, ensuring that the benefits of these technologies are realized without compromising individual rights and dignity. The advancements in risk assessment methodologies are not limited to public health and clinical medicine; they also extend to environmental health. Integrating AI technologies in environmental monitoring and risk assessment has revolutionized how we understand and manage environmental hazards. For example, AI-driven models can analyze data from sensor networks and satellite imagery to monitor air and water quality in real time, facilitating early detection of environmental threats (Adefemi et al., 2023). This proactive approach to environmental health risk assessment allows timely interventions that protect public health and the environment.

Moreover, applying cumulative risk assessment methodologies in environmental contexts has gained traction. Researchers increasingly recognize the importance of evaluating the combined effects of multiple environmental stressors on human health (Williams et al., 2012; Lentz et al., 2015). This holistic approach is essential for understanding the complex interactions between various environmental factors and their cumulative impact on health outcomes. By employing advanced statistical models and AI technologies, researchers can better assess the risks associated with environmental exposures, leading to more effective public health strategies.

7 CONCLUSION

Risk assessment in public health requires a comprehensive understanding of various factors, including lifestyle, environmental, and social determinants of health. Integrating advanced statistical modeling and innovative techniques such as AI and machine learning has dramatically enhanced our ability to predict and evaluate risks. These methods are crucial for understanding the complex relationships between exposures, behaviors, and health outcomes. As public health systems evolve, it is essential to prioritize equity and inclusivity in developing risk assessment frameworks, ensuring that they address the diverse health needs of all populations and contribute to improved health outcomes.

Furthermore, modeling lifestyle factors and assessing exposure risks are critical components in identifying high-risk populations and informing public health interventions. Statistical methods that quantify exposure levels and evaluate the effectiveness of behavior change interventions have been instrumental in preventing chronic diseases and promoting healthier lifestyles. As research and technology progress, integrating innovative methodologies will continue to

refine our ability to assess and manage health risks. Addressing health disparities through targeted interventions and collaboration across sectors will be essential in advancing health equity and improving outcomes for vulnerable communities.

REFERENCES

Abd-Alrazaq, A., Abuelezz, I., Hassan, A., AlSammaraie, A., Alhuwail, D., Irshaidat, S., Serhan, H. A., Ahmed, A., Alrazak, S. A., & Househ, M. (2022). Artificial intelligence–driven serious games in health care: Scoping review. *JMIR Serious Games*, 10(4), e39840. <https://doi.org/10.2196/39840>

Adefemi, A., Ukpoku, E. A., Adekoya, O., Abatan, A., & Adegbite, A. O. (2023). Artificial intelligence in environmental health and public safety: A comprehensive review of USA strategies. *World Journal of Advanced Research and Reviews*, 20(3), 1420–1434. <https://doi.org/10.30574/wjarr.2023.20.3.2591>

Alageel, S., Gulliford, M. C., McDermott, L., & Wright, A. J. (2017). Multiple health behaviour change interventions for primary prevention of cardiovascular disease in primary care: Systematic review and meta-analysis. *BMJ Open*, 7(6), e015375. <https://doi.org/10.1136/bmjopen-2016-015375>

Althoff, R. R., Hudziak, J. J., Willemse, G., Hudziak, V., Bartels, M., & Boomsma, D. I. (2012). Genetic and environmental contributions to self-reported thoughts of self-harm and suicide. *American Journal of Medical Genetics Part B: Neuropsychiatric Genetics*, 159(1), 120–127. <https://doi.org/10.1002/ajmg.b.32010>

Austin, P. C., & Reeves, M. J. (2013). The relationship between the C-statistic of a risk-adjustment model and the accuracy of hospital report cards: A Monte Carlo study. *Medical Care*, 51(3), 275–284. <https://doi.org/10.1097/mlr.0b013e31827ff0dc>

Bell, J. A., Kivimäki, M., & Hamer, M. (2014). Metabolically healthy obesity and risk of incident type 2 diabetes: A meta-analysis of prospective cohort studies. *Obesity Reviews*, 15(6), 504–515. <https://doi.org/10.1111/obr.12157>

Brucker, N., do Nascimento, S. N., Bernardini, L., Charão, M. F., & Garcia, S. C. (2020). Biomarkers of exposure, effect, and susceptibility in occupational exposure to traffic-related air pollution: A review. *Journal of Applied Toxicology*, 40(6), 722–736. <https://doi.org/10.1002/jat.3940>

Caleyachetty, R., Echouffo-Tcheugui, J. B., Muennig, P., Zhu, W., Muntner, P., & Shimbo, D. (2015). Association between cumulative social risk and ideal cardiovascular health in US adults: NHANES 1999–2006. *International Journal of Cardiology*, 191, 296–300. <https://doi.org/10.1016/j.ijcard.2015.05.007>

Chen, S. L., Braaten, T., Borch, K. B., Ferrari, P., Sandanger, T. M., & Nøst, T. H. (2021). Combined lifestyle behaviors and the incidence of common cancer types in the Norwegian Women and Cancer Study (NOWAC). *Clinical Epidemiology*, 721–734. <https://doi.org/10.2147/clep.s312864>

Daack-Hirsch, S., Shah, L. L., & Cady, A. D. (2018). Mental models of cause and inheritance for type 2 diabetes among unaffected individuals who have a positive family history. *Qualitative Health Research*, 28(4), 534–547. <https://doi.org/10.1177/1049732317745052>

Dale, H., Brassington, L., & King, K. (2014). The impact of healthy lifestyle interventions on mental health and wellbeing: A systematic review. *Mental Health Review Journal*, 19(1), 1–26. <https://doi.org/10.1108/mhrj-05-2013-0016>

de Gage, S. B., Bégaud, B., Bazin, F., Verdoux, H., Dartigues, J. F., Pérès, K., Kurth, T., & Pariente, A. (2012). Benzodiazepine use and risk of dementia: Prospective population based study. *BMJ*, 345, e6231. <https://doi.org/10.1136/bmj.e6231>

De Vito, K. M., Baer, H. J., Dart, H., Chiuve, S. E., Rimm, E. B., & Colditz, G. A. (2015). Validation of a risk prediction tool for coronary heart disease in middle-aged women. *BMC Women's Health*, 15, 1–9. <https://doi.org/10.1186/s12905-015-0250-x>

Den Braver, N. R., de Vet, E. W. M. L., Duijzer, G., Ter Beek, J., Jansen, S. C., Hiddink, G. J., Feskens, E. J. M., & Haveman-Nies, A. (2017). Determinants of lifestyle behavior change to prevent type 2 diabetes in high-risk individuals. *International Journal of Behavioral Nutrition and Physical Activity*, 14, 1–11. <https://doi.org/10.1186/s12966-017-0532-9>

Donkin, L., Christensen, H., Naismith, S. L., Neal, B., Hickie, I. B., & Glazier, N. (2011). A systematic review of the impact of adherence on the effectiveness of e-therapies. *Journal of Medical Internet Research*, 13(3), e1772. <https://doi.org/10.2196/jmir.1772>

Duan, Y., Shang, B., Liang, W., Du, G., Yang, M., & Rhodes, R. E. (2021). Effects of eHealth-based multiple health behavior change interventions on physical activity, healthy diet, and weight in people with noncommunicable diseases: Systematic review and meta-analysis. *Journal of Medical Internet Research*, 23(2), e23786. <https://doi.org/10.2196/23786>

Duncan, M., Vandelanotte, C., Kolt, G. S., Rosenkranz, R. R., Caperchione, C. M., George, E. S., Ding, H., Hooker, C., Karunanithi, M., Maeder, A. J., et al. (2014). Effectiveness of a web-and mobile phone-based intervention to promote physical activity and healthy eating in middle-aged males: Randomized controlled trial of the ManUp study. *Journal of Medical Internet Research*, 16(6), e136. <https://doi.org/10.2196/jmir.3107>

European Food Safety Authority (EFSA), Craig, P. S., Dujardin, B., Hart, A., Hernandez-Jerez, A. F., Hougaard Bennekou, S., Kneuer, C., Ossendorp, B., Pedersen, R., Wolterink, G., & Mohimont, L. (2020). Cumulative dietary risk characterisation of pesticides that have chronic effects on the thyroid. *EFSA Journal*, 18(4), e06088. <https://doi.org/10.2903/j.efsa.2020.6088>

Fatima, I., Grover, V., Khan, I. R., Ahmad, N., & Yadav, A. (2023). Artificial intelligence in the medical field. *EAI Endorsed Transactions on Pervasive Health and Technology*, 9, e4713. <https://doi.org/10.4108/eetpht.9.4713>

Figueroa, J. F., Frakt, A. B., & Jha, A. K. (2020). Addressing social determinants of health: Time for a polysocial risk score. *JAMA*, 323(16), 1553–1554. <https://doi.org/10.1001/jama.2020.2436>

Foster, H. M., Celis-Morales, C. A., Nicholl, B. I., Petermann-Rocha, F., Pell, J. P., Gill, J. M., O'Donnell, C. A., & Mair, F. S. (2018). The effect of socioeconomic deprivation on the association between an extended measurement of unhealthy lifestyle factors and health outcomes: A prospective analysis of the UK Biobank cohort. *The Lancet Public Health*, 3(12), e576–e585. [https://doi.org/10.1016/S2468-2667\(18\)30200-7](https://doi.org/10.1016/S2468-2667(18)30200-7)

Gesell, S. B., Barkin, S. L., & Valente, T. W. (2013). Social network diagnostics: A tool for monitoring group interventions. *Implementation Science*, 8(1), 116. <https://doi.org/10.1186/1748-5908-8-116>

Ghafari, J., Moghadasi, N., & Shekaftik, S. O. (2020). Oxidative stress induced by occupational exposure to nanomaterials: A systematic review. *Industrial Health*, 58(6), 492–502. <https://doi.org/10.2486/indhealth.2020-0073>

Goevaerts, W. F., Tenbült-van Limpt, N. C. C. W., Kop, W. J., Birk, M. V., Liu, Y., Brouwers, R. W. M., Lu, Y., & Kemps, H. M. C. (2023). Adherence to a lifestyle monitoring system in patients with heart disease: Protocol for the care-on prospective observational trial. *BMC Cardiovascular Disorders*, 23(1), 196. <https://doi.org/10.21203/rs.3.rs-2622267/v1>

Hagger, M. S., Moyers, S., McAnally, K., & McKinley, L. E. (2020). Known knowns and known unknowns on behavior change interventions and mechanisms of action. *Health Psychology Review*, 14(1), 199–212. <https://doi.org/10.1080/17437199.2020.1719184>

Hartman, S. J., & Rosen, R. K. (2017). Breast cancer relatives' physical activity intervention needs and preferences: Qualitative results. *BMC Women's Health*, 17(1), 39. <https://doi.org/10.1186/s12905-017-0392-0>

Hassan, A. M., Rajesh, A., Asaad, M., Nelson, J. A., Coert, J. H., Mehrara, B. J., & Butler, C. E. (2023a). Artificial intelligence and machine learning in prediction of surgical complications: Current state, applications, and implications. *The American Surgeon*, 89(1), 25–30. <https://doi.org/10.1177/00031348221101488>

Hassan, A. M., Rajesh, A., Asaad, M., Nelson, J. A., Coert, J. H., Mehrara, B. J., & Butler, C. E. (2023b). A surgeon's guide to artificial intelligence-driven predictive models. *The American Surgeon*, 89(1), 11–19. <https://doi.org/10.1177/00031348221103648>

Hinnouho, G. M., Czernichow, S., Dugravot, A., Nabi, H., Brunner, E. J., Kivimaki, M., & Singh-Manoux, A. (2015). Metabolically healthy obesity and the risk of cardiovascular disease and type 2 diabetes: The Whitehall II cohort study. *European Heart Journal*, 36(9), 551–559. <https://doi.org/10.1093/eurheartj/ehu123>

Hu, G., Root, M., & Duncan, A. W. (2014). Adding multiple risk factors improves Framingham coronary heart disease risk scores. *Vascular Health and Risk Management*, 10, 557–562. <https://doi.org/10.2147/VHRM.S69672>

Hunter, R. F., McAneney, H., Davis, M., Tully, M. A., Valente, T. W., & Kee, F. (2015). "Hidden" social networks in behavior change interventions. *American Journal of Public Health*, 105(3), 513–516. <https://doi.org/10.2105/AJPH.2014.302399>

Hutchinson, L. C., Forshaw, M. J., McIlroy, D., & Poole, H. (2021). The role of lifestyle on NHS ambulance workers' wellbeing. *Journal of Workplace Behavioral Health*, 36(2), 159–171. <https://doi.org/10.1080/15555240.2021.1922286>

Izah, S. C., Richard, G., Stanley, H. O., Sawyer, W. E., Ogwu, M. C., & Uwaeme, O. R. (2024a). Potential applications of linear regression models in studying the relationship between fish and contaminants in their environment: One health perspective. *Juniper Online Journal of Public Health*, 8(4), 555743. <https://doi.org/10.19080/JOJPH.2024.08.555743>

Izah, S. C., Richard, G., Stanley, H. O., Sawyer, W. E., Ogwu, M. C., & Uwaeme, O. R. (2024b). Prospects and application of multivariate and reliability analyses to one health risk assessments of toxic elements. *Toxicology and Environmental Health Sciences*, 16(2), 127–134.

Izah, S. C., Stanley, H. O., Richard, G., Sawyer, W. E., & Uwaeme, O. R. (2024c). Environmental health risks of trace elements in sediment using multivariate approaches and contamination indices. *International Journal of Environmental Science and Technology*. <https://doi.org/10.1007/s13762-024-05974-1>

Izah, S. C., Stanley, H. O., Richard, G., Sawyer, W. E., & Uwaeme, O. R. (2024d). Surface water quality: A statistical perspective on the efficacy of environmental and human health assessment tools. *Water, Air, & Soil Pollution*, 235(3). <https://doi.org/10.1007/s11270-024-06965-1>

Izah, S. C., Stanley, H. O., Richard, G., Sawyer, W. E., Uwaeme, O. R., & Sylva, L. (2024e). Source and health risks of trace metals in *Clarias batrachus* and *Chrysichthys nigrodigitatus* from surface waters in Bayelsa State, Nigeria: A probabilistic model. *Frontiers in Sustainable Food Systems*, 8, 1419143. <https://doi.org/10.3389/fsufs.2024.1419143>

Izah, S. C., Uzoekwe, S. A., & Aigberua, A. O. (2021a). Source, geochemical spreading, and risks of trace metals in particulate matter 2.5 within a gas flaring area in Bayelsa State, Nigeria. *Advances in Environmental Technology*, 7(2), 101–118.

Izah, S. C., Richard, G., Aigberua, A. O., & Ekakitie, O. (2021). Variations in reference values utilized for the evaluation of complex pollution indices of potentially toxic elements: A critical review. *Environmental Challenges*, 5, 100322. <https://doi.org/10.1016/j.envc.2021.100322>

Kansagara, D., Englander, H., Salanitro, A., Kagen, D., Theobald, C., Freeman, M., & Kripalani, S. (2011). Risk prediction models for hospital readmission: A systematic review. *JAMA*, 306(15), 1688–1698. <https://doi.org/10.1001/jama.2011.1515>

Kennedy, A., Brame, J., Rycroft, T., Wood, M., Zemba, V., Weiss Jr, C., Hull, M., Hill, C., Geraci, C., & Linkov, I. (2019). A definition and categorization system for advanced materials: The foundation for risk-informed environmental health and safety testing. *Risk Analysis*, 39(8), 1783–1795. <https://doi.org/10.1111/risa.13304>

Kerr, S., Greenland, S., Jeffrey, K., Millington, T., Bedston, S., Ritchie, L., Simpson, C. R., Fagbamigbe, A. F., Kurdi, A., Robertson, C., et al. (2023). Understanding and reporting odds ratios as rate-ratio estimates in case-control studies. *Journal of Global Health*, 13. <https://doi.org/10.7189/jogh.13.04101>

Kim, M., Jee, S. C., Kim, S., Hwang, K. H., & Sung, J. S. (2021). Identification and characterization of mRNA biomarkers for sodium cyanide exposure. *Toxics*, 9(11), 288. <https://doi.org/10.3390/toxics9110288>

Knol, M. J., Le Cessie, S., Algra, A., Vandenbroucke, J. P., & Groenwold, R. H. (2012). Overestimation of risk ratios by odds ratios in trials and cohort studies: Alternatives to logistic regression. *CMAJ*, 184(8), 895–899. <https://doi.org/10.1503/cmaj.101715>

Krukowski, R. A., Tilford, J. M., Harvey-Berino, J., & West, D. S. (2011). Comparing behavioral weight loss modalities: Incremental cost-effectiveness of an internet-based versus an in-person condition. *Obesity*, 19(8), 1629–1635. <https://doi.org/10.1038/oby.2010.341>

Langholz, B. (2010). Case-control studies = Odds ratios: Blame the retrospective model. *Epidemiology*, 21(1), 10–12. <https://doi.org/10.1097/ede.0b013e3181c308f5>

Lentz, T. J., Dotson, G. S., Williams, P. R. D., Maier, A., Gadagbui, B., Pandalai, S. P., Lamba, A., Hearl, F., & Mumtaz, M. (2015). Aggregate exposure and cumulative risk assessment—Integrating occupational and non-occupational risk factors. *Journal of Occupational and Environmental Hygiene*, 12(Sup1), S112–S126. <https://doi.org/10.1080/15459624.2015.1060326>

Li, Y., Schoufour, J., Wang, D. D., Dhana, K., Pan, A., Liu, X., Song, M., Liu, G., Shin, H. J., Sun, Q., & Al-Shaar, L. (2020). Healthy lifestyle and life expectancy free of cancer, cardiovascular disease, and type 2 diabetes: Prospective cohort study. *BMJ*, 368. <https://doi.org/10.1136/bmj.l6669>

Linder, S. H., & Sexton, K. (2011). Conceptual models for cumulative risk assessment. *American Journal of Public Health*, 101(S1), S74–S81. <https://doi.org/10.2105/ajph.2011.300318>

Linkov, I., Trump, B. D., Anklam, E., Berube, D., Boisseau, P., Cummings, C., Ferson, S., Florin, M. V., Goldstein, B., Hristozov, D., et al. (2018). Comparative, collaborative, and integrative risk governance for emerging technologies. *Environment Systems and Decisions*, 38, 170–176. <https://doi.org/10.1007/s10669-018-9686-5>

Lippke, S., Corbet, J. M., Lange, D., Parschau, L., & Schwarzer, R. (2016). Intervention engagement moderates the dose–response relationships in a dietary intervention. *Dose-Response*, 14(1). <https://doi.org/10.1177/1559325816637515>

Lotta, L. A., Abbasi, A., Sharp, S. J., Sahlqvist, A. S., Waterworth, D., Brosnan, J. M., Scott, R. A., Langenberg, C., & Wareham, N. J. (2015). Definitions of metabolic health and risk of future type 2 diabetes in BMI categories: A systematic review and network

meta-analysis. *Diabetes Care*, 38(11), 2177–2187. <https://doi.org/10.2337/dc15-1218>

Lyu, J., Lee, S. H., & Kim, H. Y. (2016). Associations between healthy lifestyles and health outcomes among older Koreans. *Geriatrics & Gerontology International*, 16(6), 663–669. <https://doi.org/10.1111/ggi.12531>

Marck, C. H., De Livera, A. M., Brown, C. R., Neate, S. L., Taylor, K. L., Weiland, T. J., Hadgkiss, E. J., & Jelinek, G. A. (2018). Health outcomes and adherence to a healthy lifestyle after a multimodal intervention in people with multiple sclerosis: Three-year follow-up. *PLOS ONE*, 13(5), e0197759. <https://doi.org/10.1371/journal.pone.0197759>

Moreno, M. A., Eickhoff, J., Zhao, Q., & Suris, J. C. (2019). College students and problematic internet use: A pilot study assessing self-appraisal and independent behavior change. *Journal of Adolescent Health*, 64(1), 131–133. <https://doi.org/10.1016/j.jadohealth.2018.06.029>

Ozieh, M. N., Garacci, E., Walker, R. J., Palatnik, A., & Egede, L. E. (2021). The cumulative impact of social determinants of health factors on mortality in adults with diabetes and chronic kidney disease. *BMC Nephrology*, 22, 1–10. <https://doi.org/10.1186/s12882-021-02277-2>

Prochaska, J. D., Nolen, A. B., Kelley, H., Sexton, K., Linder, S. H., & Sullivan, J. (2014). Social determinants of health in environmental justice communities: Examining cumulative risk in terms of environmental exposures and social determinants of health. *Human and Ecological Risk Assessment: An International Journal*, 20(4), 980–994. <https://doi.org/10.1080/10807039.2013.805957>

Rhee, E. J., Lee, M. K., Kim, J. D., Jeon, W. S., Bae, J. C., Park, S. E., Park, C. Y., Oh, K. W., Park, S. W., & Lee, W. Y. (2014). Metabolic health is a more important determinant for diabetes development than simple obesity: A 4-year retrospective longitudinal study. *PLOS ONE*, 9(5), e98369. <https://doi.org/10.1371/journal.pone.0098369>

Rodondi, N., Locatelli, I., Aujesky, D., Butler, J., Vittinghoff, E., Simonsick, E., Satterfield, S., Newman, A. B., Wilson, P. W., Pletcher, M. J., et al. (2012). Framingham risk score and alternatives for prediction of coronary heart disease in older adults. *PLOS ONE*, 7(3), e34287. <https://doi.org/10.1371/journal.pone.0034287>

Rudel, R. A., Ackerman, J. M., Attfield, K. R., & Brody, J. G. (2014). New exposure biomarkers as tools for breast cancer epidemiology, biomonitoring, and prevention: A systematic approach based on animal evidence. *Environmental Health Perspectives*, 122(9), 881–895. <https://doi.org/10.1289/ehp.1307455>

Schwalbe, N., & Wahl, B. (2020). Artificial intelligence and the future of global health. *The Lancet*, 395(10236), 1579–1586. [https://doi.org/10.1016/S0140-6736\(20\)30226-9](https://doi.org/10.1016/S0140-6736(20)30226-9)

Shea, S., Lima, J., Diez-Roux, A., Jorgensen, N. W., & McClelland, R. L. (2016). Socioeconomic status and poor health outcome at 10 years of follow-up in the multi-ethnic study of atherosclerosis. *PLOS ONE*, 11(11), e0165651. <https://doi.org/10.1371/journal.pone.0165651>

Shin, J. A., Lee, J. H., Lim, S. Y., Ha, H. S., Kwon, H. S., Park, Y. M., Lee, W. C., Kang, M. I., Yim, H. W., Yoon, K. H., & Son, H. Y. (2013). Metabolic syndrome as a predictor of type 2 diabetes, and its clinical interpretations and usefulness. *Journal of Diabetes Investigation*, 4(4), 334–343. <https://doi.org/10.1111/jdi.12075>

Silva, C. C., Presseau, J., Van Allen, Z., Dinsmore, J., Schenk, P., Moreto, M., & Marques, M. M. (2024). Components of multiple health behaviour change interventions for patients with chronic conditions: A systematic review and meta-regression of randomized trials. *Health Psychology Review*, 1–56. <https://doi.org/10.31234/osf.io/yfmjx>

Silva, C. C., Presseau, J., van Allen, Z., Schenk, P. M., Moreto, M., Dinsmore, J., & Marques, M. M. (2024). Effectiveness of interventions for changing more than one behavior at a time to manage chronic conditions: A systematic review and meta-analysis. *Annals of Behavioral Medicine*, 58(6), 432–444. <https://doi.org/10.31234/osf.io/ch2yx>

Stern, R. H. (2022). Why risk factors minimally change the ROC curve AUC. *medRxiv*, 2022–02. <https://doi.org/10.1101/2022.02.24.22271481>

Taylor, K. L., Hadgkiss, E. J., Jelinek, G. A., Weiland, T. J., Pereira, N. G., Marck, C. H., & van der Meer, D. M. (2014). Lifestyle factors, demographics, and medications associated with depression risk in an international sample of people with multiple sclerosis. *BMC Psychiatry*, 14, 1–12. <https://doi.org/10.1186/s12888-014-0327-3>

Uhernik, I. A., Skoko-Poljak, D., Dečković-Vukres, V., Jelavić, M., Mihel, S., Benjak, T., Štefančić, V., Draušnik, Ž., & Stevanović, R. (2019). Association of poor self-perceived health with demographic, socioeconomic, and lifestyle factors in the Croatian adult population. *Društvena Istraživanja: Časopis Za Opća Društvena Pitanja*, 28(2), 229–248. <https://doi.org/10.5559/di.28.2.03>

Uno, H., Cai, T., Pencina, M. J., D'Agostino, R. B., & Wei, L. J. (2011). On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. *Statistics in Medicine*, 30(10), 1105–1117. <https://doi.org/10.1002/sim.4154>

Uzoekwe, S. A., Izah, S. C., & Aigberua, A. O. (2021). Environmental and human health risk of heavy metals in atmospheric particulate matter (PM10) around gas flaring vicinity in Bayelsa State, Nigeria. *Toxicology and Environmental Health Sciences*, 13(4), 323–335. <https://doi.org/10.1007/s13530-021-00085-7>

Viallon, V., Freisling, H., Matta, K., Nannsen, A. Ø., Dahm, C. C., Tjønneland, A., Eriksen, A. K., Kaaks, R., Katzke, V. A., Schulze, M. B., et al. (2024). On the use of the healthy lifestyle index to investigate specific disease outcomes. *Scientific Reports*, 14(1), 16330. <https://doi.org/10.21203/rs.3.rs-3485042/v1>

Wang, C., Ramasamy, A., Verduzco-Gutierrez, M., Brode, W. M., & Melamed, E. (2023). Acute and post-acute sequelae of SARS-CoV-2 infection: A review of risk factors and social determinants. *Virology Journal*,

20(1), Article 124. <https://doi.org/10.1186/s12985-023-02061-8>

Wang, J., & Geng, L. (2019). Effects of socioeconomic status on physical and psychological health: Lifestyle as a mediator. *International Journal of Environmental Research and Public Health*, 16(2), Article 281. <https://doi.org/10.3390/ijerph16020281>

Webb, T., Joseph, J., Yardley, L., & Michie, S. (2010). Using the internet to promote health behavior change: A systematic review and meta-analysis of the impact of theoretical basis, use of behavior change techniques, and mode of delivery on efficacy. *Journal of Medical Internet Research*, 12(1), Article e1376. <https://doi.org/10.2196/jmir.1376>

Williams, P. R., Dotson, G. S., & Maier, A. (2012). Cumulative risk assessment (CRA): Transforming the way we assess health risks. *Environmental Science & Technology*, 46(20), 10868–10874. <https://doi.org/10.1021/es3025353>

Wilson, K., Senay, I., Durantini, M., Sánchez, F., Hennessy, M., Spring, B., & Albarracín, D. (2015). When it comes to lifestyle recommendations, more is sometimes less: A meta-analysis of theoretical assumptions underlying the effectiveness of interventions promoting multiple behavior domain change. *Psychological Bulletin*, 141(2), 474–509. <https://doi.org/10.1037/a0038295>

Woo, J., Chan, R., Leung, J., & Wong, M. (2010). Relative contributions of geographic, socioeconomic, and lifestyle factors to quality of life, frailty, and mortality in elderly. *PLoS One*, 5(1), Article e8775. <https://doi.org/10.1371/journal.pone.0008775>

Wray, C. M., Vali, M., Walter, L. C., Christensen, L., Chapman, W., Austin, P. C., Byers, A. L., & Keyhani, S. (2021). Examining the association of social risk with heart failure readmission in the Veterans Health Administration. *BMC Health Services Research*, 21, Article 888. <https://doi.org/10.1186/s12913-021-06888-1>

Yardley, L., Miller, S., Schlotz, W., & Little, P. (2011). Evaluation of a Web-based intervention to promote hand hygiene: Exploratory randomized controlled trial. *Journal of Medical Internet Research*, 13(4), Article e1963. <https://doi.org/10.2196/jmir.1963>

Zhang, W., Ahmad, M. I., & Soliman, E. Z. (2020). The role of traditional risk factors in explaining the social disparities in cardiovascular death: The National Health and Nutrition Examination Survey III (NHANES III). *American Journal of Preventive Cardiology*, 4, Article 100094. <https://doi.org/10.1016/j.ajpc.2020.100094>

Zhang, Y., Guo, X., Zhang, N., Yan, X., Li, M., Zhou, M., He, H., Li, Y., Guo, W., Zhang, M., & Zhang, J. (2021). Effect of mobile-based lifestyle intervention on body weight, glucose, and lipid metabolism among the overweight and obese elderly population in China: A randomized controlled trial protocol. *International Journal of Environmental Research and Public Health*, 18(9), Article 4854. <https://doi.org/10.3390/ijerph18094854>

Zhou, X. H., Wang, X., Duncan, A., Hu, G., & Zheng, J. (2017). Statistical evaluation of adding multiple risk factors improves Framingham stroke risk score. *BMC Medical Research Methodology*, 17, Article 330. <https://doi.org/10.1186/s12874-017-0330-8>

Cite this Article: Izah, SC; Udoфia, AS; Johnson, IU; Etim, NG (2024). Risk Assessment and Behavioral Health Statistics: Modeling Lifestyle Factors and Exposure Impacts on Public Health Outcomes. *Greener Journal of Epidemiology and Public Health*, 12(1): 21-34, <https://doi.org/10.15580/gjeph.2024.1.120424188>.