Greener Journal of Agricultural Sciences

Excellence and Timeliness

  
  

Change Language

Bulegeya et al

Greener Journal of Agricultural Sciences

Vol. 11(2), pp. 98-107, 2021

ISSN: 2276-7770

Copyright ©2021, the copyright of this article is retained by the author(s)

https://gjournals.org/GJAS

 

 

 

 

 

The effect of Potyvirus resistance loci from the maize inbred line Oh1VI on development of maize lethal necrosis (MLN)

 

 

Victoria B. Bulegeya1*; Mark W. Jones2; Tryphone G. Muhamba3; Biswanath Das4; Peter R. Thomison5;  David M. Francis6; Margaret. G. Redinbaugh7

 

 

1-   Tanzania Agriculture Research Institute (TARI) – Dakawa Center, P.O.Box 1892, Morogoro, Tanzania.

2-   United States Department of Agriculture–Agricultural Research Service (USDA-ARS), Corn, Wheat and Soybean Research, Wooster, OH 44691, USA;

3-   Department of Crop Science and Horticulture, Sokoine University of Agriculture (SUA), P.O.Box 3005, Morogoro, Tanzania

4-   International Maize and Wheat Improvement Center (CIMMYT), P.O.Box 1041, Village Market, Nairobi 00621, Kenya

5-   Department of Horticulture and Crop Science, The Ohio State University, 2021 Coffey Rd, Columbus, OH 43210, USA.  

6-   Department of Horticulture and Crop Science, The Ohio State University-Ohio Agriculture Research and Development Center (OARDC), Wooster, OH 44691, USA 

7-   USDA-ARS, Corn, Wheat and Soybean Research, Department of Plant Pathology, The Ohio State University, Wooster, OH 44691, USA.

 

 

ARTICLE INFO

ABSTRACT

 

Article No.: 060421055

Type: Research

 

Maize lethal necrosis (MLN), a viral disease currently affecting corn in East and Central Africa is caused by a combined infection of Maize chlorotic mottle virus (MCMV) and any maize infecting potyvirus. Most of African maize germplasm is susceptible to the disease and there are no known sources of resistance. Recombinant inbred lines (RIL) derived from Oh1VI, a line known for multi-virus resistance with different QTL for potyvirus resistance on chromosome 3, 6 and 10 were selected and screened against MLN under artificial inoculation and natural infestation. Differences were observed among genotypes and QTL groups at P=0.05 in all experiments except under field inoculation. Genotypes with QTL combination of 3, 6 and 10 had at least 20% reduction in MLN symptoms compared to a susceptible check. These results provide useful baseline information on utilization of potyvirus resistance genes for MLN resistance and control in Sub Saharan Africa.

 

Accepted:  06/06/2021

Published: 31/07/2021

 

*Corresponding Author

Victoria Bulegeya

E-mail: victoriabulegeya@ rocketmail.com

 

Keywords:

Maize; Maize lethal necrosis (MLN); Potyvirus; Genetic resistance; Sub Saharan Africa

 

 


 

Return to Content       View  [Full Article - PDF]  

[Full Article - HTML]               [Full Article - EPUB]

Post-Publication Peer-review Rundown

View/get involved, click [Peer-review]

 

 


REFERENCES

 

Adams, I. P., Miano, D. W., Kinyua, Z. M., Wangai, A., Kimani, E., Phiri, N., & SouzaRichards, R. (2013). Use of nextgeneration sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing maize lethal necrosis in Kenya. Plant Pathology62(4), 741-749.

 

Adams, I. P., Harju, V. A., Hodges, T., Hany, U., Skelton, A., Rai, S.& Ngaboyisonga, C. (2014). First report of maize lethal necrosis disease in Rwanda. New Disease Report29(22), 2044-0588.

 

Chrisholm, S. T., Mahajan, S.K., Whitham, S.A., Yamamoto, M.L., & Carrington, J.C. (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of the tobaccoetch virus. Proceedings of National Academy of Science, USA, 97, 489–494

 

De Groote, H., Oloo, F., Tongruksawattana, S., & Das, B. (2016). Community-survey based assessment of the geographic distribution and impact of maize lethal necrosis (MLN) disease in Kenya. Crop Protection, 82, 30-35.

 

Gomez, P., Rodriguez-Hernandez, A.M., Moury, B. & Aranda, M .A. (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. European Journal of Plant Pathology, 125, 1-22.

 

Gowda, M., Das, B., Makumbi, D., Babu, R., Semagn, K., Mahuku, G., Babu, R., Semagn, K., Olsen, M. S., Bright, J. M., Beyene, Y & Prasanna, B. M. (2015). Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. Theoretical and Applied Genetics128(10), 1957-1968

 

Gowda, M., Beyene Y., Makumbi, D., Segmagn K., Olsen M., Jumbo B., Biswanath, D., Mugo, S., Suresh, L. & Prasanna, B. (2018). Discovery and validation of genomic regions associated with resistance to maize lethal necrosis in four biparental populations. Molecular Breeding 38, 16. DOI 10.1007/s11032-018-0829-7

 

Jones, M. W., Redinbaugh, M. G., Anderson, R. J., & Louie, R. (2004). Identification of quantitative trait loci controlling resistance to Maize chlorotic dwarf virus. Theoretical and Applied Genetics, 110, 48–57.

 

Jones, M. W., Redinbaugh, M. G., & Louie, R. (2007). The Mdm1 locus and maize resistance to Maize dwarf mosaic virus. Plant Disease, 91, 185–190.

 

Jones, M. W., Penning, B. W., Jamann, T. M.,  Glaubitz, J.C., Romay C., Buckler, E.S & Redinbaugh, M.G. (2018). Diverse chromosomal locations of Quantitative Trait Loci for Tolerance to Maize chlorotic mottle virus in Five Maize Populations. Phytopathology, 0, 0. doi:10.1094/PHYTO-09-17-0321

 

Karanja, J., Derera, J., Gubba, A., Mugo, S & Wangai, A. (2018) Response of selected Maize Inbred Germplasm to Maize lethal Necrosis Disease and its causative viruses (Sugercane Mosaic Virus and Maize Chlorotic Mottle virus in Kenya. The Open Agriculture Journal 12, 215 -226. DOI: 10.2174/1874331501812010215

 

Kusia, E. S., & Villinger, I. P. M. (2015). First report of lethal necrosis disease associated with co-infection of finger millet with Maize chlorotic mottle virus and Sugarcane mosaic virus in Kenya. Plant Disease99(6), 899-900.

 

Louie R (1980) Sugarcane mosaic virus in Kenya. Plant Disease 64, 944–947.

 

Louie, R. (1986) Effects of genotype and inoculation protocols on resistance evaluation of maize to Maize dwarf mosaic virus strains. Phytopathology, 76, 769-773.

 

Lübberstedt, T., Ingvardsen, C., Melchinger, A. E., Xing, Y., Salomon, R., & Redinbaugh, M. G. (2006). Two chromosome segments confer multiple potyvirus resistance in maize. Plant breeding125(4), 352-356.

 

Lukanda, M., Owati, A., Ogunsanya, P., Valimunzigha, K., Katsongo, K., Ndemere, H., & Kumar, P. L. (2016). First Report of Maize chlorotic mottle virus Infecting Maize in the Democratic Republic of the Congo. Crop Protection82, 30-35.

 

Mahuku, G., Lockhart, B. E., Wanjala. B., Jones, M. W., Kimunye1, J. N., Stewart, L. S., Cassone, B. J., Sevgan, S., Nyasani, J. O., Kusia, E., Kumar, L.P., Niblett, C. L., Kiggundu,  A., Asea, G., Pappu, H.R., Wangai, A., Prasanna, B.M. & Redinbaugh, M.G. (2015). Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology, 105(7), 956-965.

 

Mahuku, G., Wangai, A., Sadessa, K., Teklemold, A., Wegary, D., Ayalneh, D., Adams, I., Smith, J., Bottomley, E., Bryce, S., Braidwood, L., Feyissa, B., Regassa, B., Wanjala, B., Kimunye, N., Mugambi ,N., Monjero, K., Prasanna, M.  (2015). First report of Maize chlorotic mottle virus and Maize lethal necrosis on maize in Ethiopia. Plant Disease99(12), 1870.

 

Makone, S. M., Menge, D., & Basweti, E. (2014). Impact of maize lethal necrosis disease on maize yield: a case of Kisii, Kenya. International Journal of Agricultural Extension, 2(3), 211-218.

 

Melchinger, A. E., Kuntze, L., Gumber, R. K., Lübberstedt, T., & Fuchs, E. (1998). Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theoretical and Applied Genetics96(8), 1151-1161.

 

Niblett, C. L., & Claflin, L. E. (1978). Corn lethal necrosis-a new virus disease of corn in Kansas. Plant Disease Reporter62(1), 15-19.

 

Redinbaugh, M. G., Jones, M. W., & Gingery, R. E. (2004). The genetics of virus resistance in maize (Zea mays L.). Maydica49(3), 183-190.

 

Redinbaugh, M. G., & Hogenhout, S. A. (2005). Plant rhabdoviruses. In The World of Rhabdoviruses (pp. 143-163). Springer Berlin Heidelberg.

 

Redinbaugh, M. G., & Pratt, R. C. (2009). Virus resistance. In Handbook of maize: Its Biology (pp. 251-270). Springer New York.

 

Redinbaugh, M.G. and Zambrano, J.L. ( 2014) Chapter 8: Control of Virus Diseases in Maize. In: Advances in Virus Research, vol. 90 (G. Loebenstein and N. Katis, eds.), Elsevier, New York

 

Semagn, K., Beyene, Y., Babu, R., Nair, S., Gowda, M., Das, B., Tarekegne, A., Mugo, S., Mahuku, G., Worku, M., Warburton, M.L., Olsen, M., Prasanna, B.M. (2015). Quantitative trait loci mapping and molecular breeding for developing stress resilient maize for sub-Saharan Africa. Crop Science, 55(4), 1449-1459.

 

Uyemoto, J. K., Bockelman, D. L., & Claflin, L. E. (1980). Severe outbreak of corn lethal necrosis disease in Kansas. Plant Disease (formerly Plant Disease Reporter)64(1), 99-100.

 

Wangai, A. W., Redinbaugh, M. G., Kinyua, Z. M., Miano, D. W., Leley, P. K., Kasina, M., & Jeffers, D. (2015). First report of maize chlorotic mottle virus and maize lethal necrosis in Kenya. Virology485, 205-212.

 

Xia, X., Melchinger, A. E., Kuntze, L., & Lübberstedt, T. (1999). Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology, 89(8), 660-667.

 

Xiao, W. K., Zhao, J., Fan, S. G., Li, L., Dai, J. R., & Xu, M. L. (2007). Mapping of genome wide resistance gene analogs (RGAs) in maize (Zea mays L.). Theoretical and Applied Genetics, 115, 501–508.

 

Xu, M. L., Melchinger, A. E., Xia, X. C., & Lubberstedt, T. (1999). High-resolution mapping of loci conferring resistance to Sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Molecular and General Genetics, 261, 574–581.

 

Zambrano, J. L., Jones, M. W., Brenner, E., Francis, D. M., Tomas, A., & Redinbaugh, M. G. (2014). Genetic analysis of resistance to six virus diseases in a multiple virus-resistant maize inbred line. Theoretical and Applied Genetics127(4), 867-880.

 

Zhang, S. H., Li, X. H., Wang, Z. H., George, M. L., Jeffers, D., Wang, F. G., ... & Yuan, L. X. (2003). QTL mapping for resistance to SCMV in Chinese maize germplasm. Maydica48(4), 307-312.

 


 

 

Cite this Article: Bulegeya VB; Jones MW; Muhamba TG; Das B; Thomison PR;  Francis DM; Redinbaugh MG (2021). The effect of Potyvirus resistance loci from the maize inbred line Oh1VI on development of maize lethal necrosis (MLN). Greener Journal of Agricultural Sciences 11(2): 98-107.

 


Advertisement


Call for Articles/Books

Call for Scholarly Articles


Authors from around the world are invited to send scholary articles that suits the scope of this journal. The journal is currently open to submissions and will process and publish articles daily, immediately they are ready.


The journal is centered on quality and goes about its processes in a very timely fashion. Seasoned editors/reviewers will be consulted to review each article(s), profer quality evaluations and polish the articles with expertise before publication.


Use our quick submit button to submit or simply send your article(s) as an e-mail attachment to manuscripts@acad.gjournals.org or manuscripts.igj@gmail.com.


Call for Books


You are also invited to submit your books for online or print publication. We publish books related to all academic subject areas.    Submit as an e-mail attachment to books@acad.gjournals.org.




Search

Login Form

Other Journals


Newsletters


Sponsored